PCI-E密码卡主要功能
SM1、SM4算法支持SM1、SM4等算法的ECB、CBC等模式;支持基于SM1、SM4 等算法的MAC消息鉴别码的产生与验证。SM2算法支持基于SM2算法的数字签名与验证、加密与;支持SM2算法的密钥对生成;
支持基于SM2算法的密钥协商。SM3算法支持基于SM3杂凑算法的数据摘要产生与验证。SM9算法支持基于SM9算法的数字签名与验证、加密与;支持SM9算法的密钥对生成;
支持基于SM9算法的密钥协商。随机数生成采用物理噪声源产生真随机数。密钥管理支持不同算法的密钥生成与销毁、导入与导出、备份与恢复;采用三级密钥保护体系,保证密钥安全。硬件接口支持PCI-Ex4接口;可定制开发mini PCIE、USB以及用户自定义接口。软件接口支持国密SDF接口,符合GMT 0018-2012《密码设备应用接口规范》;支持PKCS#11、JCE 等接口,支持对接口的定制开发;
支持在操作系统内核与应用层调用密码卡编程接口;
支持多卡并行调用,支持用户态与内核态的多进程、多线程调用。操作系统支持支持Windows、Linux、Unix、FreeBSD等32/64位操作系统。支持基于龙芯、飞腾、申威(神威)、海思、兆芯等国产处理器的操作系统。
PCIE密码卡
密码安全芯片可以产生代表计算机平台的身份识别号。也就是说,每个平台的身份识别号都是,这样每一台安全PC就相当于有一个硬件“”,以此来验证用户身份。这对于保护用户数据安全而言,无疑多加了一层保险。并且,密码安全芯片可广泛应用于对信息安全有着较高要求的相关领域,满足信息安全处理中针对信息提出的机密性、完整性、可用性、可控性等高安全性需求。
PCIE密码卡
如今互联网技术飞速发展,电子邮件、网上支付、个人通信等信息服务被广泛使用,在此背景下信息安全成为重要研究课题。公钥基础设施(Public KeyInfrastructure,PKI)技术利用公钥理论和技术提供了信息安全服务,而基于PKI技术的SM1.SM2.SM3SM4、算法是国家密码管理局制定的商用密码,在电子政务、电子商务等领域广泛应用。PCIE(PCIExpress)总线技术作为第三代I/O总线标准采用串行数据传输和点到点互连技术,在高速设备中应用广泛。在数字系统设计领域中,较高时钟频率带来信号完整性、电源完熬性、串扰等问题,用传统方法设计PCB(Printed CircuitBoard)将无法满足系统稳定工作的要求。
PCIE密码卡
高速电路时钟信号频率较高,时钟信号的抖动、漂移、畸变对系统有很大影响,高速PCB的设计就要求信号波形受干扰要小。所以,要优先考虑系统的时钟分配和走线等问题。高速时钟信号要优先布线,其中首要考虑系统的主时钟信号线,走线要尽可能的短,走直线,且避免过孔,为防止时钟与电源之间的干扰,时钟信号也要避开电源部分。当同一电路板上用到多个不同频率的时钟时,两根不同频率的时钟线不能并行走线,而对于多个器件使用同一频率时钟信号,可采用蜘蛛型、树状型、分枝型时钟分配网络。
以上信息由专业从事密码卡公司的国泰网信于2025/1/8 17:56:26发布
转载请注明来源:http://beijing.mf1288.com/bjgtwx-2832759427.html