ICP-MS简述
20世纪60年代末期,采用电感耦合等离子体源的原子光谱技术成为当时应用于微量元素分析的一项非常有前
途的技术(Greenfield等,1964; Wendt与Fassel, 1965)。但在分析超低含量物质时由于背景光谱增强,光谱干扰
严重使分析灵敏度和准确度达不到要求。只有质谱法能同时满足谱图简单、分辨率适中和较低检出限的要求。因此, ICP-AES所具有的样品易于引入、分析速度快、多元素同时分析的特点与质谱仪的联用成为科学和商业上研究的
热点。1970年许多公司深入的参与了该技术的研究,CP作为发射源使等离子体中分析物有效电离能够满足新一代
仪器源的要求。同时也注意到惰性气体在大气压下的电等离子体可能是一个很好的离子源。因此人们采用四极杆 质量分析器和通道式离子检测器开展可行性研究。Gral在70年代中期首先报道了用等离子体作为离子源的质谱分 析法。1981年Gray在Surrey实验室设计完成了 ICP源上所预期性能的设备,获得了张ICP谱图。1983年英 国VG公司与加拿大Sciex公司推出商业化的ICP-MS,1984年在用户实验室才安装ICP-MS。在此以后 ICP-MS在化学分析中广泛应用开来。
ICP-MS分析流程的建立
对于一种新基体的样品来说,常规的分析路径如下:
1. 酸化或溶解样品
样品一般需要先进行酸化溶解使目标元素溶解在液体中.
2. 选择目标分析物和目标同位素
根据浓度范围来选择分析物和同位素。
3. 先进行扫描以便识别出存在的干扰
可以先进行半定量扫描,可以通过半定量扫描判断大致存在哪些元素以及各个元素 的大致浓度范围。
4. 选择数据的采集模式以及校正曲线的类型
一般如果使用连续流的数据采集模式,会使用外标定量法。也有其他的数据评估方
法可以使用。
5. 选择合适的内标元素
内标元素的使用可以校正由于时间或基体抑制效应引起的信号漂移。
6. 能进行基体匹配
将标样的基体匹配到和您的样品基体完全一致,可以将两者之间的差异减小到小, 并且有助于得到更为准确的结果数据。
7. 进行质量控制校正(QC check)
在分析过程中插入另一来源的标样(2nd Source Standard)或者有证标准物质 (Certified Reference Material),确保数据的完整性。
如果 ICP-MS 质谱仪的灵敏度低,可能有以下一些原因和解决方法���
样品制备问题:确保样品的制备方法正确,避免污染或损失。
仪器校准:定期进行仪器的校准和质量校正,确保仪器的准确性。
离子源条件:优化离子源的参数,如射频功率、气体流量等,以提高离子化效率。
接口和锥体维护:定期清洁和维护接口和锥体,以减少离子传输的损失。
检测器性能:检查检测器的状态,确保其正常工作。
质谱干扰:排除可能存在的质谱干扰,如基质效应、多原子离子等。
气体质量:使用高纯度的气体,以避免气体不纯对灵敏度的影响。
样品提升率:检查样品的提升率是否合适,过低的提升率可能导致灵敏度降低。
仪器老化或故障:如果仪器使用时间较长或出现故障,可能需要进行维修或部件更换。要解决灵敏度低的问题,可能需要综合考虑以上因素,并进行逐步排查和优化。
3. 如何进行仪器的校准和质量校正?
进行 ICP-MS 质谱仪的校准和质量校正可以确保仪器的准确性和可靠性,具体步骤如下���
硬件校准:
进行电子学参数的校准,包括离子能量、离子束流、放大器增益等。
进行离子光学系统的校准,包括离子传输效率、离子聚焦等。
元素校准:
使用标准溶液进行元素的校准,可以选择物质或商业标准物质。
根据标准溶液的浓度和质谱仪的响应信号,建立元素的校准曲线。
根据校准曲线,对未知样品进行浓度的测量和计算。
质量校正:
进行质量的校正,以消除同位素的影响。
进行质量偏差的校正,以保证不同质量数的离子有相同的响应信号。
在校准和质量校正过程中,需要注意以下几点���
选择合适的标准溶液和校准方法,以确保校准结果的准确性。
定期进行校准和质量校正,以保证仪器的准确性和稳定性。
记录校准和质量校正的结果,以便后续分析时参考。
需要注意的是,不同的仪器型号和分析要求可能会对校准和质量校正有具体的要求,因此好参考仪器的操作手册和制造商的建议进行操作。
以上信息由专业从事电感耦合等离子体质谱厂家的钢研纳克于2025/1/11 15:19:43发布
转载请注明来源:http://beijing.mf1288.com/bjgynk-2833835184.html